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Abstract

We investigate compactness properties of the Riemann—Liouville operator R, of fractional
integration when regarded as operator from L5[0,1] into C(K), the space of continuous
functions over a compact subset K in [0, 1]. Of special interest are small sets K, i.e. those
possessing Lebesgue measure zero (e.g. fractal sets). We prove upper estimates for the
Kolmogorov numbers of R, against certain entropy numbers of K. Under some regularity
assumption about the entropy of K these estimates turn out to be two-sided. By standard
methods the results are also valid for the (dyadic) entropy numbers of R,. Finally, we apply
these estimates for the investigation of the small ball behavior of certain Gaussian stochastic
processes, as e.g. fractional Brownian motion or Riemann-Liouville processes, indexed by
small (fractal) sets.
© 2004 Elsevier Inc. All rights reserved.

MSC: 47B06; 26A33; 60G15; 28A80

Keywords: Fractional integration; Kolmogorov numbers; Entropy numbers; Fractal sets; Small deviation;
Fractional Brownian motion

*Fakultit fiir Mathematik und Informatik, Friedrich-Schiller-Universitit Jena, Ernst-Abbe-Platz 1-4,
DE-07743 Jena, Germany. Fax: +49-3641-9-46002.
E-mail address: lindew@minet.uni-jena.de.

0021-9045/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2004.04.011



208 W. Linde | Journal of Approximation Theory 128 (2004) 207-233
1. Introduction

The aim of the present paper is to investigate compactness properties
of the Riemann-Liouville fractional integration operator R, when regarded
as an operator from L,[0,1] into C(K) (the space of continuous functions
over K) for certain compact subsets K<[0, 1]. Here, as usual, the operator R, is
defined by

(R f) (1) = ﬁ /Ot(z — s \f(s)ds, e[, 1], (1)

Properties of R, as operator from L,[0,1] into C(K) are of special interest
for “small” sets K, i.e. those with Lebesgue measure zero. To our opinion
those questions are interesting in their own right, although our main motivation
for their investigation came from the theory of stochastic processes. Recall
that R, is tightly related to the fractional Brownian motion By of Hurst
index H :oc—% as well as to the so-called Riemann-Liouville process Wy
(cf. [13,17,18] or Section 6). Thus our results lead to a deeper insight into
the structure of By and Wy when indexed by “‘small” subsets K in [0, 1]
(e.g. fractal sets). From a probabilistic point of view similar questions were recently
treated in [19] and led to new properties for a large class of Lévy processes. Let us
also mention some related results in [3] where the authors investigate compactness
properties of integral operators in dependence of the entropy numbers of the
underlying compact set.

We shall use two different quantities to measure the degree of compactness of R,,
namely Kolmogorov and (dyadic) entropy numbers. Let us shortly recall their
definition.

If S is a compact operator from a Banach space E into a Banach space F its
Kolmogorov numbers d,(S) are defined by

dy(S) =dy(S:E-F) = inf{ sup dp(Sx,F,): F,cF, dim(F,1)<n}7 (1.2)
lIxlle <1
where, as usual,
dr(y, F,) = inf{||y — z||p: z€F,}

denotes the distance of ye F to the subspace F,, (w.r.t. the norm in F).
The (dyadic) entropy numbers of S are given by

on— 1
en(S) =e,(S: E—F) = mf{8>0 S(Bg)c U y,+.sBF}

Here Br and Bp denote the (closed) unit balls in E and F, respectively. In other
words, ¢,(S) is the infimum over all ¢> 0 such that S(Bg) can be covered by at most
2"~ balls of radius ¢>0 in F. We refer to [6,24-26] for more information about
Kolmogorov and entropy numbers.
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As shown in [5,7,23] these two numbers are tightly related. For example, if an
operator S maps a Hilbert space H into a Banach space E, then it holds

dy(S:H—E)~n"" - (logn)”
for some y>1 and feR iff
en(S:H—E)x~n"" - (logn)’

Here we have used the following notation. Given two sequences (ay),~, and (b,),~,
of positive real numbers we write a, <b, provided that a,<c- b, for a certain ¢>0.
If, furthermore, also b, < a,, then we write a, ~b,.

Let us come back to R, as defined in (1.1). First note that R, maps [0, 1] into
L,[0,1] for a certain ¢g>1 iff «>max{0,1/2 — 1/¢q}. Moreover, if 2<¢< oo, then

dy(Ry : L5]0, 1] L,[0, 1]) xen(R, : Lo[0, 1] L,[0, 1]) ~n* (1.3)

(cf. [1,11,17]). Observe that for a>1 the functions R, f, /'€ L,[0, 1], are continuous,
thus in this case we may regard R, as operator from L;[0, 1] into C[0, 1]. Of course,
the asymptotic in (1.3) remains valid in this case as well.

Given a compact subset K< [0, 1], then for oz>% the operator R, may be regarded
in natural way as operator from L;[0, 1] into C(K), i.e. we investigate R, f with
respect to the norm

||R1f||C(K) = ?g]g |(Raf)(l)‘a f6L2[07 1]'

Intuitively it is clear that the degree of compactness of R, should increase (i.e. its
Kolmogorov and/or entropy numbers tend to zero faster) provided that K becomes
smaller. To make this more precise we need some suitable measure for the size of the
compact set K. At a first glance one might expect the Hausdorff dimension of K as
such a measure. Yet it turns out that this not the right quantity for our purposes.
More suited are quantities related with the so-called box dimension of K (cf. [9]), i.e.
we describe the size of K by its covering properties. More precisely, an adequate tool

for the size of K is the behavior of its entropy numbers ¢,,(K) defined by
m
em(K) = inf{5>0 :K< | ) A, A intervals of length<(3}. (1.4)

j=1

If l<a<3, then R, is known to map L [0, 1] into C*~1/2[0, 1], the space of (o — 1)-
Holder continuous functions over [0, 1]. Hence, for those «’s quite general assertions

about so-called Hoélder operators apply and the results in [4,6,30] lead to the
following:

Proposition 1.1. Suppose %< (x<% and &,(K) <h(m) for a regularly varying decreasing
function h. Then this implies

d(Ry: L2[0,1]> C(K))<c-m™ 2 h(m)* "2 (1.5)
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The disadvantage of the preceding result is that it does not apply for large o’s.
This is somehow surprising because the larger o the smoother the functions R, f
are. Thus our main goal was to extend Proposition 1.1 to arbitrary oc>%
and, moreover, to estimate the Kolmogorov numbers of R, directly by the entropy
numbers of the underlying set K. In the latter problem we did not succeed
completely, because the case %<oc<1 is not covered by the following main result of
this paper.

Theorem 1.2. Let o= 1. Then there is a k € N such that for all compact sets K <10, 1] it
follows that

dm(Ry : L1[0,1] > C(K))<c-m™ -6, (K)™"2, meN. (1.6)
For example, one may choose x =4 [o] + 11.

Applying Carl’s inequality (cf. [5]) to Theorem 1.2 we get the following estimate for
the entropy numbers of the Riemann—Liouville integration operator.

Theorem 1.3. Let K<(0,1] be compact and suppose that &,(K)<h(m), meN, for
some decreasing function h satisfying sup,,sh(m)/h(2m) = i< oo. Then for o>1
there is a ¢>0 (only depending on A and o) such that

em(Ry 1 L2]0, 1] > C(K))<c-m~ /2 h(m)*™/%, (1.7)

Remark. Estimate (1.7) is tightly related to results presented in [33]. But
observe that there only sets K are investigated which satisfy some kind of
self-similarity while our estimates apply to arbitrary compact subsets of the unit
interval.

Furthermore, we prove that under some regularity assumptions about g, (K)
estimate (1.6) is optimal. More precisely, the following will be shown.

Theorem 1.4. Suppose o >% and let K <10, 1] be a compact set such that for some 1> 1
we have

em(K) <A e (K), meN. (1.8)
Then it follows that
d(Ry 2 L2[0,1] > C(K))=c-m™ 2 - g, (K)*'/2, (1.9)

where ¢>0 only depends on o and 1.

Combining the preceding Theorem with Theorem 1.2 (resp. Proposition 1.1 for
%<oc< 1) and with the above-mentioned relation between the entropy and
Kolmogorov numbers for operators defined on Hilbert spaces leads to the following.
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Corollary 1.5. Suppose that &y (K)~m= - (logm)? for some 0=1 and BeR (note that
by K< |0, 1] we necessarily have <0 for 0 = 1). Then this implies

dm(Ry : L2]0,1] > C(K)) &~ em(Ry : L]0, 1] - C(K))

m—1/2-06-1/2) (log m)/f<a71/2).

The organization of the paper is as follows. In Section 2 we prove
Theorem 1.2 first for integer o’s. Then a multiplication formula (Lemma 3.2)
allows us to deduce the general case from that of integer «’s. This will be carried
out in Section 3. In Section 4 we prove Theorem 1.4. Again we derive the proof
from that for integer o’s. Compact sets K<|0,1] with Lebesgue measure zero
admit a very special (Cantor like) representation which allows quite precise
estimates for ¢,(K). The representation as well as the two-sided entropy
estimates will be subject of Section 5. Finally, in Section 6 some
probabilistic applications will be stated and proved. For example, we
determine the small ball behavior of fractional Brownian motions and
Riemann-Liouville processes indexed by compact subsets K of [0, 1] in dependence
of the size of K.

Throughout the paper ¢ with or without subscript always denotes a positive
constant (maybe different at each occurrence) which is either universal or depends
only on the order of the Riemann—Liouville operator.

2. Proof of Theorem 1.2 for integer o’s

As already mentioned, when a>% the results about Holder continuous operators
do no longer apply. Hence some completely different approach is necessary. The
basic idea is to cover K in an optimal way by m intervals Ay, ..., A, with |A;| <6 and
to prove very precise estimates (in dependence of 6 and m) for d,(R,) as operator
with values in C(A) where A =, A

Let us fix the notation. Here and later on Aj,...,A, are always intervals
in [0,1] with disjoint interior, say A;=[a;,b;], 1<j<m, and A=, A
We may regard now R, as operator from I,[0,1] into C(A) in the usual
way, i.e.

(Ruf)(1) = —

! o—1
F(oc)/o (t—5)" f(s)ds, teA. (2.1)

When splitting R, into m independent pieces we obtain an operator R2 mapping
L,(A) into C(A) acting as follows:

(RAf)(t s)ds-1a,(1), teA. (2.2)

Our strategy is to compare the compactness properties of R, with those of R2 in
dependence of m and the length of the intervals. To this end we introduce operators
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SJ, 1<j<m, mapping L,[0, ] into C(A;) by

SO0 = s [ =57 o) s, re 23)
Since

it is necessary to investigate properties of the S7’s more thoroughly.

Let m =1, i.e. we have only one interval A = [a,b] and only one operator S,
defined by (2.3), i.c.

(S,/)(0) ::ﬁ /0 = V() ds, a<e<b. (2.5)

For each a>0 this operator maps L,[0,a] into L,(A) and if o>1, then S, is even an
operator into C(A).
A first result describes the structure of S, for integer o’s.

Lemma 2.1. If o is an integer, then it follows that rk(S,) <a.

Proof. Writing S, as
5010 =i S (1) [ s #1400
o = F(O{) £ k A N s)as A
immediately proves the lemma. [

We are now in the position to estimate d,(R, : L»[0,1]— C(A)) in the case of
integer o’s.

Proposition 2.2. Suppose o.eN and let Ay, ..., A, be intervals in [0, 1] as before with
union A. Then for any ne N we have

Aoz (Ry - L5[0,1] > C(A)) <c-n* - |A[*7V2, (2.6)
In particular, if |Aj| <0, 1 <j<m, then it follows that

iy vm(Ry L]0, 1] = C(A)) <c-m~1/2 . 5% 12, (2.7)

Proof. Since (2.4) and Lemma 2.1 imply for integer o’s that rk(R, — R}) <mua, we
conclude dyy11 (R, — Rﬁ) = 0. Using additivity properties of the d,’s this leads to

yimn(Ry) <dy(RY)  as well, (2.8)
dnerx( )<dn( 1) (29)
Both estimates are valid for any choice of m disjoint intervals Ay, ..., A, in [0, 1]. In

particular, the remain true when we shift Ay, ..., A,, to the left, i.e. when passing to
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Ay, ..., A, with |Aj] = |Aj], 1<j<m, and
A=A U--UA, =10,|A].

We are going to apply (2.8) for Ay, ..., A,, and (2.9) for A, ..., A,,. In the latter case
the operator R, (which we denote by R, in order to distinguish it from the operator
given by (2.1)) maps L;[0, |A|] into CJ0, |A|], hence by the scaling properties of R, and
by (1.3) we obtain

dy(R,)<c-|AP7Y? 7, neN. (2.10)
Since R2 may be isometrically transformed into Ré it follows that
dy(RY) = d,(RY), neN. (2.11)
Hence by (2.8)—(2.11) we finally arrive at
d2s<m+n(R:x 1Ly [07 1] - C(A)) < d«m+n(R§) = daern(RaA)
<d,(R,)<c-|AP7'? n

as claimed.
Estimate (2.7) may be immediately derived from (2.6) by choosing n = m.
As consequence of Proposition 2.2 we may now prove Theorem 1.2 for special o’s.

Proof of Theorem 1.2. for integer o's: Given a natural number m we choose a
covering of K by m intervals Ay, ..., A, such that 0 = sup; ¢;<,, |Aj| <2 - &n(K). Let
as before A be the union of the A;’s. Then we define an operator @ : C(A) —» C(K) by
&(f) =f|x and obtain

[Ry: L]0, 1] - C(K)] = ®2[Ry : L1[0, 1] > C(A)].
Consequently, if e N, by Proposition 2.2 it follows that
doaityn(Ry - L2[0, 1] > C(K)) <[] - diazsym (R 2 L2[0, 1] > C(A))
<c omVr.grgy _m—1/28m(K)a—1/2.

This completes the proof of (1.6) with k =2a+ 1. O

3. Proof of Theorem 1.2—general case

We turn now to the case of non-integer o’s. Here (2.8) and (2.9) are no longer
valid, thus we have to find some substitute for these estimates.

We start with introducing another helpful sequence of so-called operator numbers.
Let S be an operator from a separable Hilbert space H into a Banach space E. Then
S is said to be an /-operator provided that

Xs = 2 SkSfk (3.1)
pai
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converges a.s. in £ for some (each) ONB ( fi),~, in H. Here (), denotes an i.i.d.
sequence of A(0, 1)-distributed random variables. Whenever S is an /-operator, its /-
norm is defined by

1(S) = (E|| x|,
Given an [-operator S: H— E we set
L,(S) =inf{l{(S—A): A:H—-E, rk(4)<n}.

For properties of these numbers we refer to [13,17,26].
Let now S be a compact operator between two Hilbert spaces H; and H,. Then S
admits a so-called Schmidt representation, i.e.

o0

Sh = Z Jn<h7fn>gn
n=1
with ¢;>0,>--- >0 tending to zero and two orthonormal systems (fi),-, and
(9 )= in Hy and Ho, respectively. The ¢,,’s are usually called the singular numbers
of S. It is known (cf. [24, 11.3.3]) that then d,(S) = o, for ne N. Furthermore, S is an
l-operator iff it is Hilbert—-Schmidt, i.e. iff the ¢,’s are square summable and,
moreover, as easily can be seen (cf. [13]) then we have [,(S) = (3,2, ai)l/z. In
particular, it holds

Vi1 (S)<1,(S). (3.2)

It is worthwhile to mention that a deep result due to Pajor and
Tomczak—Jaegermann (cf. [22]) asserts that (3.2) remains valid (with some
universal constant on the right-hand side) for /-operators with values in Banach
spaces.

The following Lemma is crucial to get rid of a factor  /m later on. Before
formulating it let us fix the notation. Given Hilbert spaces Hj, ..., H,, the Hilbert
space 1(H;) is then defined by

L(H;) = {x = (x1, ..., xn): xj€H;}

. 2\1/2
with norm ||x||12(7¢f) = 1) 2.

Lemma 3.1. Let Sy, ...,S,, be l-operators mapping H into some Hilbert spaces

Hi, ..., Hm. Define S:H—hL(H;) by Sh=(Sih,...,Suh) for he H. Then for each
neN it follows that

" 1/2
i - doy1(S) < [Z 1,,(5,)2] . (3.3)
j=1

Proof. Let 4;:H—H; be operators of rank <n such that
Z(SJ_A/)<(1+F) ZH(SI)’ I<j<m,
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for a given £>0. Define now 4 : H— hL(H;) by Ah = (A\h, ..., A,h) for he H. Then
we have rk(A4) <nm and in view of
165 = ARIP =D 11(S; = Aphlls,
j=1
one easily gets
m m
bn(S)P<I(S = AP <Y 1S = 4)’<(1+6)° ) I(S)*. (3.4)
j=1 j=1
Thus (3.3) follows directly from (3.2) and (3.4). O
Our next objective is to estimate the degree of compactness of R, — R} as defined
in (2.1) and (2.2) in the case ¢ N. The basic idea is to reduce this case to that of
integer o’s. To this end let us introduce another version of R,. Given A = [a,b] in
[0, 1] define R on L,[0,5] by
1
I'(o
®nw=4"
—— [0(t — )" ca<t<b.
) [t —s)"" f(s)ds:a<t<b
For o> 0 this is a well-defined operator with values in L,[0, 5] while for o>1 it has
even values in CJ0,5]. Furthermore let S, (for A = [a,b] as before) be defined by
(2.5). Then the following multiplication formula will play an important role later on.

Jie =5 f(s) ds : 0<t<a,

(3.5)

Lemma 3.2. Suppose oc>% and >0. Then we have

Syip = R)oSp + SyoR}. (3.6)
Here Sg and R% are regarded as operators into L,(A) and into L0, b), respectively. In
particular, if «eN, then

Syip = RSy + F,, (3.7)

where F, is an operator of rank less or equal than o.

Proof. To verify (3.7) we first observe that
S,=R,—R° (3.8)
and

Ryip = R,°Rp as well as R2+ﬁ =

R)°R}. (3.9)
Consequently, by (3.8)
Ryip = RyoRp = [Ry + S,]o[R}; + S

=R}, + Syo R} + R)oSp + S,08p. (3.10)
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Note that Sp maps into L,(A) while S, is defined on L,[0, a], thus S,oSs = 0. Since
Sa+ﬂ = R:x+ﬁ - R2+ﬁu

from (3.10) we derive (3.6).
If «eN, by Lemma 2.1 we get rk(S,)<a. Thus setting F, == SaoR% by (3.6) this
immediately leads to (3.7). O

The following observation about representation (3.6) will be important later on:
Since Sy maps L,[0,a] into Ly(A), by the definition of R (compare (3.5)) the first
term in (3.6) may also be written as

RY:Sy = [Ry: La(A) = C(A)]F[Sp : Lo[0, 1] > Lo(A)] (3.11)

Here the first operator at the right-hand side of (3.11) has to be understood as the
restriction of R, to functions in L,[0, 1] having their support in A.
Consequently, in view of (2.4) we obtain the following result.

Corollary 3.3. Let Ay, ..., A, be as before and suppose that o.e N. Then for any >0
we have

Ry — Ry ;= Ryo (Z S-ﬂ’> +F, (3.12)
J=

where F is an operator with rk(F) <am.

In view of (3.12) it is necessary to get more information about the
degree of compactness of the operators S/, 0<f<1, regarded as mappings
into Ly(A).

Lemma 3.4. Define Sp: L,[0,a] > L,(A), A = [a, b], by

1 a
S l::—/ 1 — )P (s) ds.
(51100 = g5 | (=919
If 0< B <1, then there are constants c,cg>0 (independent of A) such that for all n>2
du(Sp)<c-e " Al (3.13)

Proof. We split the proof into three steps. In a first one we investigate the operator
S~ mapping L»[1, o0) into C[0, 1] defined by

SN0 = [ =0

and we claim that

I'n+3-p)

dn(Schz[l,OO)—)C[oa 1])<e- r'n+2)

g (3.14)
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To verify this take /'€ L[1, 00) and let P,(S;°f;1) be the nth Taylor polynomial of
Sy f taken at the point 7y = % Then it follows that

I -pH2-p)...(n+2 - *
(700 - PuSFfinl < 5y PCTEZZ) [7 oot )

<C.M

F(n+2) 27”Hf||2

which proves (3.14).
In a second step we fix a number A>1 and define an operator
S[/} : [,[0, A] > L,[0, 1] by

A

(SH)(1) = / (¢ + )" (s) ds. (3.15)

0

We are going to prove that for n>2

dy(S7: Lo[0, 4] > L[0, 1)) < ¢ - " (3.16)
with ¢, cg>0 independent of A. To this end write

A _ (D) (2)

Sp =8, +S85 +F, (3.17)

where

| 1
(S{7)(t) = / (045 1(s) ds,

(SP1)(0) = / [+ 9" — P11 £(s) ds

and the operator F is defined by

A
(FF)(1) = / 14(s) ds.

1
A result of Laptev (cf. [14]) asserts

dy(S5) : L2]0,1] > Ly[0, 1)) < c - e (3.18)
and (3.14) lets us conclude

F(n+3—/3). .
I'(n+2)

with ¢> 0 independent of A. Of course, rk(F) = 1, hence by (3.17)
(S <du(S)) + d (),

(S5 La[1, 4] - L]0, 1)) <c (3.19)

i.e. by (3.18) and (3.19) we have dn(S£)<c ceem'” as long as n>=2. This proves
(3.16).
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In a last step we verify now (3.13). Thus put 6 := |A|. By isometric transformations
(change of variables) it follows that

dn(Sp) = o - dn(gﬂ)v (3.20)
where Sy maps L,[0,1/4] into L,[0, 1] and

. 1/6 ‘
S0 = [+ o) ds
Of course, by (3.16) (with A =1/6) and by (3.20) we finally get (3.13) as
asserted. [
Corollary 3.5. Let 01 =022 --- =0 be the singular numbers of Sg. Then,
op<c-e " AP

provided that n=2. Hence

- 1/2
L(Sp) = (Z oﬁ> <c- Al (3.21)
n=2

Remark. It is not difficult to see that (3.21) remains true for /,(Sy) = /(Sp) provided
that 0< <3 while it is no longer valid for /(Sp) when 1<f<1.

We are now in the position to extend Proposition 2.2 to fractional integration
operators with arbitrary index.

Proposition 3.6. Let Ay, ..., A, be as before intervals in [0, 1] with disjoint interior and
with union A and suppose sup ¢ <,,|Aj|<0. Then for a>1 there is a natural number
Kk = k(o) such that

den(Ry 1 L1]0,1] > C(A)) <c-m™ /2. 57712, (3.22)

Proof. Given > 1, in view of Proposition 2.2 we may suppose that o = k + § where
keN and 0<f<1. By (3.12) we get

R, — R} = RR-S + F,
where S =377 S/{ and rk(F) <km, consequently,

dm(Zlc+5)(R1 - R?) <dm(k+1)(R£) : d4m(S) (323)

We estimate now both terms on the right-hand side of (3.23) separately. Because of
(2.11), (2.10) and (2.9) we obtain

dm(k+l)<Rlé) <c- m71/2 ' 5k71/2 (324)
while Lemma 3.1 for n = 2 together with (3.21) yields

m 1/2
V2m - dgy(S) < (Z b(s;f) <c-m'? .5k (3.25)
j=1
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Combining (3.23)—(3.25) finally gives

Apiokss)(Ry — R <e-m™V2 . 57712,
thus for each /e N we conclude

dm(2k+5+l)(Ra) <dml(Ré) +c- m_l/z . 50(_1/2 (326)
and

dm(2k+5+l) (Ré) <d111l(Ro«.) +c- m71/2 ' 5a71/2' (327)

We argue now as in the proof of Proposition 2.2, i.e. we first apply (3.26) with
[ =2k + 6, then (2.11), next (3.27) with / = 1 and finally (1.3). Doing so it follows
that

a1y (R) < dypais) (RY) + ¢y -m ™12 5712

:dm(2k+6) (Rﬁ) +cp- m71/2 . 56{71/2

N

dm(ﬁy) +0- m—1/2 . 50(—1/2
< ;- m*l/Z . 5171/2

This completes the proof with kx =4 [o] + 11. O

Remark. We do not know whether or not (3.22) remains valid for %<oc< 1. At least
our methods do not apply for those a’s.

Proof of Theorem 1.2. The assertion follows from Proposition 3.6 exactly in the
same way as in the case e N (where we used Proposition 2.2 instead).
4. Lower estimates

The aim of the present section is to prove Theorem 1.4. Again we start with the
investigation of integer o’s.

Lemma 4.1. Let K<|[0,1] be a compact set and suppose that there are sy, ...,s, €K
such that
|S,'—Sj|>57 l?éj (41)

If 1<10,1] is defined by

" 0 0
]::U[Sj—§75j+§],

J=1

then for aeN it follows that

1/2
dy(Ry : Ly(I) > C(K))=c - n~V/? - log (%) 12 1<n<m.
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Proof. We choose a function ¥ : R— [0, co) possessing the following properties:

(i) supp(y)<=(0,1),
(if) ¥(1/2) =1 and

(iii) ¥ is a-times continuously differentiable.

Setting ¢ == *, we also have supp(¢)=(0,1) and, moreover, because of xeN it
follows that R,¢ = . With the help of this function ¢ we construct now functions
qu? 1<]<m7 by

s—8;+0/2
QDJ(S) = (p(jé/)7 SERv

satisfying
@il = 8- llgll, and supp(e;)=[s; — /2,5 + /2. (4.2)

Furthermore,
o t—s;+9/2 w ft—8+6/2
(Rugy)() = 0" (Ro) (=222 ) =y (F25002)

leads by property (ii) of ¥ to
(Royp;)(s5j) = 0%, 1<j<m. (4.3)

Next we define an operator B: [} — L,(I) by
B(x) = Z Xj@;, X = (X1, eeey Xm),
J=1

which by (4.2) satisfies
1BEOIL = 0" - ol - 1]l
Another operator ¢ : C(K)—/" is given by
(/) = (f(s))iz1, [feC(K).
Of course, ||®||<1 and in view of (4.3) it follows that
(PoR,°B)(x) = 0" - x, x€ely,
i.e. we have
DR, B =& - iy
where i o, 1 /5= 17! denotes the canonical identity map. Consequently,
0" - dy(i0) <||BI| - d(@oRy s La(I) = 1) < 8" - |||, - d(Ry 2 La(I) — C(K)

which completes the proof because of a deep Theorem of Garnaev and Gluskin (cf.
[10]) asserting

1/2
dn(igm)ZC-n_]/zlog($) , l<n<m. O (4.4)
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As an immediate consequence of Lemma 4.1 we get the following stronger version
of Theorem 1.4 in the case of integer a’s.

Proposition 4.2. Suppose aeN and regard R, as operator from L,[0,1] to C(K) for a
certain compact set K <0, 1]. Then it follows that

dw(Ry: 12[0,1] > C(K))=c-m 2 g, (K) /2

Proof. Given meN we choose a § with ¢,,(K)/2<3 <e,,(K). Then there are s, ..., sy,
satisfying (4.1), hence Lemma 4.1 applies with » = m. Note that, of course,

dm(Ry: Lo(I) > C(K)) <dm(Ry: L0, 1] > C(K)).
This completes the proof. [

Before treating the non-integer case we need another lemma for later purposes.

Lemma 4.3. Let Ay, ..., A, be intervals in [0,1] with disjoint interior and |A;| <9,
1<j<m. Then for f€(0,1) there is a keN such that
dom(Ry : L2]0, 1] = Ly(A)) < c - o (4.5)

where, as before, A = J_, A;.

Proof. The proof follows almost exactly as that of Proposition 3.6 and we use the
same notation as there. Writing Rg = Sp + Rﬁ by (3.25) it follows that d,,(Sp)<c-

6. Hence, if neN, we obtain the estimates

dsam(Rp) <c - & + dy(RY) (4.6)
as well as
Ay am(RG) <c - 6" + dy(Rp). (4.7)

In contrast to the proof of Proposition 3.6 here Ry is an operator from L,[0, |A|] into
L,[0,]A]], thus by (1.3)

du(Rg)<n™F - (Al s
Summing up, by (4.6)-(4.8) we finally get
dom(Rp) < ¢ 6 + ds(RY) = ¢ + ds(R)
< +da Ry <

This proves the assertion with k =9. [

Now we are in position to prove Theorem 1.4.
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Proof of Theorem 1.4. First observe that it remains to prove (1.9) for non-integer

o’s. Set
k=]+1 and p=k—oa. (4.9)
Consequently, we have 0<f<1.
For the proof we need a covering Ay, ..., A,, of K as well as points sy, ...,s5y in K
with sufficiently large distance. Let us start with the construction of the covering.
For a given meN we choose intervals Ay, ..., A, with disjoint interior such that

K< UL, A = Aand, moreover, sup; ¢;<,,|Aj| <2 - &,(K). Next we choose some well
separated points in K. For a number M >2m which will be specified later on take
0>0 such that

K
gMé ) <o <em(K). (4.10)
Then there are sy, ..., sy €K for which |s; —s;| >0 if i#/. With these s5;’s we define
now intervals I; possessing disjoint interiors by

0 0
IjI: |:Sj§7Sj+§:|, 1<]<M

Let D={1,..., M} be the set D == {j<M: I;=A}. Then it follows that 7 = #(D)
satisfies m> M — 2m and, moreover,

=] eA (4.11)

jeD

For a more precise formulation of the following arguments we denote by J; and Jx
the canonical embeddings from L,(I) and L,(A) into L,[0, 1], respectively. If & is
defined by (4.9), then by Lemma 4.1 we obtain for each ne N the estimate

d,(RioJa : Ly(A)— C(K))= d,(RyoJ; : Ly(I) — C(K))
me 1/2
>c-n"1? log (7) SR (4.12)

Next we apply the semigroup property of the Riemann—Liouville operators. Recall
that k = o + . Doing so we obtain

[RkOJA . Lz(A)—> C(K)] = [Ra . L2[0, ]]—>C(K)]O[RI;OJA . Lz(A)—>L2[O, 1]]

and, consequently, by (4.12) for any /e N with / + m<m it follows that

‘. (l_"_m)fl/z ) log(l:,—f_em> 1/2.5;(,1/2
<dpu(R,: L1]0,1] > C(K)) - di(RpoJa : Lo(A) — Ly [0, 1]). (4.13)
We claim now that for 0< <1 there exists a natural number k with
dem(Rgodn - Ly(A) = L1[0,1]) < ¢ - &m(K)P. (4.14)
Assume for a moment that (4.14) has already been proven. Then we may precise the
choice of the number M from above as M = (x + 3)m, hence m>(x + 1)m, and
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using (4.13) with [ := km we derive from (4.14) and (4.10) that
¢ e (K m 2 < dy(Ry 2 La[0, 1] C(K)) - dig(Rged s = La(A) — Ly[0, 1)
< ¢ dy(Ry: Ly]0,1]— C(K)) - &m(K)P. (4.15)
In view of (1.8) we have
sm(K)k_l/2<p~aM(K)k_l/2

for a certain p>1 depending on / in (1.8) and on «. Hence (4.15) leads to the desired
estimate

d(Ry: 12[0,1] > C(K))=c-m 2 g (K) P12 = o2 g, (K)* V2,

Consequently, to complete the proof it remains to verify (4.14). First note that for
any neN
dn(R/;OJA : LQ(A) —>L2[0, 1]) = d”(JZRE . LQ[O, 1] —>L2(A)), (416)

where the dual operator J{Rj acts as
1 /1 o1

— t—s)" f()dt, seA.

rp) Js =910

By an ecasy isometric transformation JiR; may be transformed to

R[; : L,[0,1] —>L2(A) with

(JARRf)(s) =

(Rpf)(u) :ﬁ /Ou(u—v)ﬁlf(u) dv, ueA.

Here the set A is defined by A == Aj U - UA,, with A; = {1 —u:ueA;} for 1<j<m.
Observe that |A;| = |A;|<2 - &,(K), hence we are in the situation of Lemma 4.3 and
this leads to

dlcm(R/)’> <c ey (K)ﬂ> (417)

where, for example, ¥ may be chosen as k =9. In view of (4.16) and using
d, (JZR;}) = dy(Rg) by (4.17) we get the desired estimate (4.14). This completes the
proof of Theorem 1.4. [

Questions. 1. We do not know whether or not the regularity condition (1.8) is indeed
necessary for the lower estimate in the non-integer case. Note that for integer a’s
Theorem 1.4 holds without any extra assumption about the behavior of ¢,(K).

2. We believe that Theorem 1.4 is also valid for the entropy numbers of R,, yet
could not verify this because we do not know whether or not (4.5) is true for the
entropy numbers as well. But observe that (1.9) holds for integer o’s. Indeed, using
instead of (4.4) an estimate for the entropy numbers of the embedding 7, ., due to
Schiitt (cf. [28]) by the same arguments as before

em(Ry: L2[0,1] 5> C(K))=c-m™"/? - g, (K)*/?

whenever ae N.
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5. Metric entropy of fractal sets

In view of Theorems 1.2 and 1.4 it is important to find precise upper and lower
estimates for ¢, (K) where K<|[0, 1] is a compact set with |K| = 0. Before stating a
general representation theorem for those sets let us introduce the following class of
functions on [0, 1]:

A= {A :[0,1] =0, 1] : A(2)

0
= Zock for certain 74 € (0, 1),ak>0,2ak = 1}. (5.1)

<t k=1
Note that A is exactly the set of distribution functions of discrete probability
measures on (0, 1).
Proposition 5.1. Let K <0, 1] be compact with
0eK, 1eK and |K|=0. (5.2)
Then there is a function A€ A such that

K ={A(1r): 0<t<1}. (5.3)
Proof. We may represent the complement K¢ of K (taken in [0, 1]) in the form
o0
K =] G (5.4)
k=1

with open, disjoint intervals Gy, Gy, .... Setting a; == |Gi|, k= 1,2, ..., in view of
|K| = 0 we obtain

i Oy = 1. (55)
k=1

By induction we choose now real numbers 1, €(0,1) such that 1, <1, for certain
1<k+#1< oo iff the interval Gy is on the left hand side of G;. With these oy ’s and 1;’s
we define a function 4 by

A() =Y u, 0<I<l.

<t

Because of (5.5) it follows that 4 € A and, moreover, by the construction of the t;’s it
holds

Ae—0)= )" |G| and A(n)= > |G,
T < Tk

T <Tk

thus Gy, = (A(tx — 0), A(tx)) for k=1,2,.... Take now xel0,1]. This element
does not belong to the closure of the range of A iff there is a number k>1
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with A(t; — 0) <x<A(t), hence

[0, N{A(1) : 0< <1 U (tx = 0), 4(t)) = K¢

completing the proof. [

Remarks.

(1) Of course, in representation (5.3) the function 4 .4 may always be chosen such
that the weights oy tend to zero monotonely.

(2) It is not difficult to see that, conversely, every K represented as in (5.3) (with a
suitable function A4 € .4) satisfies (5.2).

Proposition 5.2. Suppose a compact set K< [0, 1] admits representation (5.3) with a
Sfunction A€ A for which oy =0y > --- =0. Then it follows that

1 o0
é'2m+1(1<)<E Z Ok (56)
k=m+1
while
wmp%. (5.7)

Proof. Let us first verify (5.6). Suppose the complement of K in [0, 1] is represented
as in (5.4), i.e.
K¢ = U G, with |Gk‘ = Ol.

Fix meN now and let Cy, ..., C,, be the gaps between G, ..., G, i.e. Cy, ..., C,, are
closed disjoint intervals (also disjoint to each Gy, 1 <k<m) with

m

UCuUG

Then we obtain

kslJ ¢ (5.8)
=0
as well as
m m o0
DIGI=1=1Gl= Y o (5.9)
=0 k=1 k=m+1

Given a number §>0 each set C; may be covered by at most 6 ' -|Cj| + 1
open intervals of length less than 6. Consequently, by (5.8) the set K admits a
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o-cover by at most
5 G +m+1 (5.10)
J=0

open intervals. Applying (5.10) with
0= 5)11 = Ol
m k=m+1

in view of (5.9) the set K may be covered by 2m + 1 intervals of length less than §,,.
In other words,

1 o0
& < m = — K
201 (K) S0 = > o
k=m+1

as asserted.

Estimate (5.7) is even easier to prove. Indeed, fix again meN and define elements
ske[0,1], 1<k<m, by s; = A(tx). By the construction we have s, € K, and for k#/
there is either an interval of length o or of length o; in-between s, and s;. Since the
ox’s are decreasing this implies

Isk — 57| =min{og, o} = .

Thus there exist m elements in K with mutually distance of at least «,, yielding
em(K)=0,,/2 as asserted.

Corollary 5.3. Suppose that the weights oy of A€ A satisfy wz ~k=? - (log k)/f for some
0> 1 and feR and let K =0, 1] be generated by A as in (5.3). Then independent of the
choice of the ti’s we have

Em (K) %m70 . (log m)ﬁ

Remark. If either the o;’s tend to zero very rapidly, e.g. o = 2%, or very slowly, e.g.

ar~k=' - (logk)™ for some f>1, then Proposition 5.2 does not lead to sharp
estimates for ¢,,(K). Here the t;’s (more precisely, the way how the 7;’s are ordered)
are important for the degree of compactness of K.

Example. Let us treat as an example the classical Cantor set C in [0, 1]. As can be
seen easily, this set may be generated by a function 4 where the decreasing weights oy

satisfy oy &k ~1023/1022  Consequently, it follows that
d(Ry : L2[0,1] > C(C)) X em(Ry : L[0, 1] C(C)) xm™1/>700=1/2),

where 0 = log 3/log 2.

Proposition 5.2 allows us to reformulate Theorems 1.2 and 1.4. Given a function
Ae A (we always suppose now that the weights oy are in decreasing order) and oc>%
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we may define an operator R : L,[0, 1]— C[0, 1] as follows.

|

(RAf)(1) ::—/A<[)(A(t) —s)“flf(s) ds, 0<t<l1. (5.11)
* (o) Jo ’

Proposition 5.4. For Ae A with (decreasing) weights oy let R4 be defined by (5.11).
Then the following are valid.

(1) For certain keN and c¢>0 it follows that

o o—1/2
dem(RY+ L5]0,1] > C[0, 1)) <c - m ™™ - ( 3 ock> . (5.12)
1

@) If axe~kP(log k)’ for some 0>1 and BeR, then this implies
dm(R;(4 1 1,[0,1]- C[0,1]) ~ em(Rf : L]0, 1] - CJ0, 1))

~ m 20O (log )P (5.13)

Remark. Suppose that the weights o, of the function 4 are not necessarily
normalized, i.e. it holds > /7 ox = d for some d>0. In this case the operator R
maps L,[0,d] into C[0, 1]. Yet by the scaling properties of R, estimates (5.12) as well
as (5.13) remain valid in this more general situation (without any extra factor
depending on d).

6. Probabilistic applications

Given a Hilbert space H and an operator S:H— C(K) for a certain compact
metric space K such that

J

Xs =S &St (6.1)
=1

converges a.s. (in C(K)) for some (each) ONB (f;);. in H (here as in (3.1) the &;’s
are i.i.d. standard normal) we may regard Xy as stochastic process indexed by K.
More precisely, we set

Xs(t) = i &(Sf)(1), tek. (6.2)

Note that Xg = (Xs(#)),.x is then a centered Gaussian process possessing a.s.
continuous paths. For example, if

f: m™? e,(S)< (6.3)
m=1
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by Dudley’s theorem (cf. [8]) combined with a result in [32] the sum in (6.1) converges
a.s., hence the process Xs over K is well-defined with a.s. continuous paths.

A higher degree of compactness of the operator S leads to better small deviation
estimates for the process Xs. More precisely, the following was proved in [12,17].

Proposition 6.1. Given y>0 and € R the following are equivalent.

(1) en?(S)<m71/277(lOg m)ﬁ,
(i) —log P(sup | Xs(2)] <g) <eg 10g(1/3)/f/v_
tekK

Moreover, the above equivalence remains valid for ~ instead of < in (1) and (i),
respectively.

Here we have used the following notation: Given two functions f and ¢ on (0, ),
then f(¢) <g(e) means that there is a constant ¢>0 such that f(¢)<c- g(¢) for small
&>0. We write f(¢) ~g(e) provided that f (&) <g(e) holds together with g(e) </ (¢).

Let H>0 be given and let K be a compact subset of [0, 1]. Then we regard the
Riemann-Liouville operator Ry, as before as operator from L,[0, 1] into C(K).
In view of (1.3) for all H>0 this operator satisfies (6.3), hence for any fixed ONB
(/j)j=1 in Lo[0, 1] the process

Z (Re12.15)(2)

H+1/2 Z 5’/ 1T s, teK,

is a well-defined centered Gaussian process with a.s. continuous paths over K. The
process Wy = (Wg (1)), is usually called (cf. [18]) Riemann—Liouville process with
Hurst index H. For H = % the process Wy is the Wiener process while for H = k +%
with keN we get the k-times (pathwise) integrated Wiener process.

A first application of Proposition 6.1 leads to the following result.

Theorem 6.2. Suppose the compact set K<[0,1] satisfies &,(K)<m~ (logm)’ for
some 0=1 and R (again we necessarily have <0 for 0 = 1). Then this implies

—log P(SUp W (1) <8> <& VO Jog(1/e)P)". (6.4)
tekK

Moreover, if even &,(K)~m™ (logm)’, then

—log [P’(sup | W (1)] <s> ~e /O og(1/6)P°. (6.5)
teK
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Proof. Suppose first &, (K)<m~" (logm)”. Then by Theorem 1.3 this implies
en(Ru1/2: La[0,1] = C(K)) <m™ 2701 (1og m)P™.
An application of Proposition 6.1 with y = 0H and with fH easily gives (6.4) as
asserted.
If even &, (K)~m ?(logm)’, this time we may use Corollary 1.5 and obtain

em(Rui1/2: La[0,1] > C(K)) xm™ /21 . (log m)™.

Another application of Proposition 6.1 (this time for ~) completes the proof of
(6.5). O

Example. In the special case C of the Cantor set it follows that

—logP (sup | W (1) <s> rglog2/(H log3)
teC

In particular, for the k-times integrated Wiener process over C this implies that the
order of its small ball behavior (in the log-level) is g2 108 2/((2k+1)log 3),

In the case 0 < H < 1 the process Wy is tightly related with the fractional Brownian
motion By of Hurst index H. Recall that By is a centered Gaussian process indexed

by [0, c0) with a.s. continuous paths satisfying
EBy(0)By(s) = 3™ + 7 — |t - s, 0<t,s< 0.

The following concrete representation of By over [0, 1] turns out to be very useful.
Let the Hilbert space H be given by H = L[0,1]@®L;[0,0) and define
Sy :H—-C[0,1] by

Su(f®9) = cu(Ru12f + Ong).

Here

o -1/
ey = r(H+1/2)<(2H)‘+/0 ((1+S)H1/2—SH1/2)2ds> "

and the operator Qp : L,[0, o0)— C[0, 1] is defined by

(N0 =i [, (49" 2 =) ds (6:5)

As shown in [20] (cf. also [27]) the operator Sy generates the fractional Brownian
motion By on [0, 1] as stated in (6.2), i.e. we have

Bu() =" &(Suf)(0). 1ef0,1]
=

Of course, regarding Sy as operator from H into C(K) for some compact subset
K<10,1], this operator generates (By(f)),.x In the same way. In particular,
Proposition 6.1 applies and relates the behavior of e,(Sy : H— C(K))) with the small
ball behavior of By over K.
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Consequently, we get the following version of Theorem 6.2 for the fractional
Brownian motion.

Theorem 6.3. Suppose the compact set K<[0,1] satisfies &,(K)<m™’ (log m)ﬁ for
some 0=1 and feR. Then for 0<H <1 this implies

—log P(SUp By (1)] <8) <&~/ og(1/e)". (6.7)
tekK
Moreover, if even &,(K)~m= (logm)”, then
—log P(sup |By(1)] <e> ~e VO og(1/6)P0. (6.8)
tekK

Proof. As shown in [1] the operator Oy defined in (6.6) satisfies
em(Qn: La[0, 50) > C[0, 1)) 27" (6.9)
with some ¢>0 only depending on H. Of course, then also
em(Op: L]0, 00) > C(K))<27<m" (6.10)
for any compact subset K< [0, 1].
Suppose now &, (K)<m~ (log m)ﬁ. Then by Theorem 1.3 this implies
em(Riy1)2: L2]0,1] = C(K)) <m™ /271 . (log m)P".
Thus by
en-1(Sy : H— C(K))<en(cy Rpy1)2: L2[0,1] - C(K))
+ em(cy Qn : Ls]0, 00) - C(K))
from (6.10) we derive
em(Sy: H— C(K))xm™ 21 (log m)P*

as well and the proof of (6.7) may now completed as before by an application of
Proposition 6.1.
Assertion (6.8) follows by similar arguments and thus we omit the proof.

Remark. If K = [0, 1], thus 6 = 1 and f = 0, then (6.8) was first proved in [21,29].
Later on this was sharpened in [16].

Before we state another probabilistic application let us recall some facts about
stable subordinators. Let I'; <I'; < --- be the arrival times of a Poisson process with
intensity 1 and let 7y, 12, ... be independent, uniformly distributed on [0, 1]. Assume
that (I';);», and (1), are independent. For some pe(0,1) define the random

function 4 on [0, 1] via

Ay =17 o<i<l.

T <t
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Then A is a Lévy process over [0, 1], non-decreasing and p-stable (usually called p-
stable subordinator, cf. [2] for more information). Let now By be a fractional
Brownian motion of Hurst index H € (0, 1) over [0, o), independent of the p-stable
subordinator 4 and define Xy as

Xu(t) = By(A(2)), 0<t<l1.

Note that for H = 1/2 the stochastic process X/, is the so-called 2p-stable Lévy
motion. The small ball behavior of Xy (in the usual way and also conditionally, i.e.
for a fixed path of 4) may be derived from results for general subordinators in [19] (if
H = % cf. [31] for the non-conditional case). Not covered by the results in [19] is the
process

Yu(t) = Wu(A(r), 0<t<],

with H > 1. The deeper reason is that Talagrand’s small ball result (cf. [15, p. 257]), a
basic ingredient in [19], does no longer apply for those H’s.

For a precise formulation of the next result let us suppose that Wy is modelled
over (2,P) while A4 is defined on (@', ).

Proposition 6.4. For 0<p<1 let A be a p-stable subordinator independent of Wy,
H>0. Then for almost all ' € Q' we have

—10g|P’< sup |WH(A(l,w’))|<s> ~e P (6.11)

0<r<l

Proof. By the Strong Law of Large Numbers it follows that lim;_, ,I;/j =1 a.s.
Hence, almost all weights o of the subordinator A4 behave like k=P and,
consequently, by Proposition 5.4 and the Remark following it, for a.s. all w’ €Q’ the

AC-) pehave like m~'/2~H/? . Thus the assertion follows from

entropy numbers of R}, 1

Proposition 6.1.

Remark. Applying Fatou’s Lemma to (6.11) leads to a one-sided estimate for the
usual (non-conditional) small ball behavior of Y. More precisely, we then get

—tog (P x B sup [WiA()]<ef <o,

o<l
The corresponding lower estimate will be treated (in a more general context) in a
forthcoming paper.
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